(fv850vay 91 FRIE2A
Eesngnlng Story—Ba.sed {nterfaces by Interval Scrlpts
) Claudlo S. Pinhanez” : Kenp Mase Aaron Bobick "

MIT Media Laboratory
boblck@medla.mlt.edu

o MIF Megdia Laboratory.
pinhanez@media.mit.edu

ELR L N PRI SORE:

o ATR-MIC Research Lab.
i mase@mic..atr.co.jp
Abstract Th S, paper argues that 1nteract10n in immersive, story based mterfaces can be
described by scfipts ‘based on temporal-ifitérvals and their 1ocal relationships. In such interval
scripts the system’s designer attaches sensor and. actuator routines to time intervals and the
development of the interaction is' defined by local precedence relations provided by the designer
of the system. Interval scnpts have the potential to. express more, clearly the complex structure
of time events in immersive environments where the user’s actions span non-punctual. intervals
of time, making the use of event-based interaction demgn quite difficult. This paper examines

in detail two scenes implemented in a prototype interactive system called. SingSong.

4/9—n» zau7remu#%;M4/97z xoﬁﬁ&

&bib W%@#%D%%%&E%@%eVXTAmf/771~z% ﬁmwgﬁk%mﬁﬁ
HMRERICESCRAZY TR (A= A7) 7 ERR), FELAVTERTEII L%
FFo TNIRELDOEL L —BHET 7 F 21—y MEFRERBICHEESSETBVT, A V5572
YavORBEFOBRBMRMOBUEERT A LICL > TRBT 5. RX T SingSong & IERE

ﬁszAmzoo%E%kbﬁﬁf x7u7%m£ﬁ&%#b<ﬁ«éo

1 Introduction

The des1gn of human machine interaction re-
quires a' lot of knowledge and experience in
many different fields. Scripting of the inter-
action is an important subject which has not
been well discussed especially in the .case of
multi-modal and gesture-based scripted inter-
actions ([2]). One of the objectives of our cur-
rent research is the design and implementation
of an interaction manager system which is-able
to handle complex patterns of immersive inter-
action evolving: through time. The.interaction
manager should be able to track multiple con-
current stories turned on or off accordlng to the
development of a bas1c story and the users’ ac-
tions. There have been few" experlments “with
story-based i immersive systems ([3]) and we are
also ‘interested in ‘examining the 1mpact that
some dramatlc features present in stomes can
have in 1nterface de51gn ([4])

Also gesture- and actmn—based mteractlon
embodies physical actions which ~make in-
terfaces, fundamentally dlfferent to conven-
tiona] monotonic interfaces based on keyboard,

mouse, or even speech. We want to be able to
step further from the “ask & tell” interface era
to the “action & feel” era where users become
able to use their whole body for interaction in
immersive environments ([5, 6, 8]). To handle
the design of such immersive énvironments it is
necessary to'develop scripting tools which ab-
stract sensor and actuator control issues and
enable direct expression of interactive action.’

In this paper we propose a novel scr1pt
paradlgm for 1mmers1ve, mteractwe systems
based on the concept of interval scripts. Script-
ing usmg intervals is discussed and exemph-
fied in an 1nteract1ve system ‘named SingSong
which was designed and 1mp1emented using the
paradlgm We have noticed that users seemed
to be quite comfortable to. 1nteract with the
active ob Jects in the SzngSong env1ronment
mostly due to the loose constrajnts on duratmn
and timing of action which is a main feature of
mterval scrlpts

For the actual run of the system we devel-
oped an interaction manager. which uses the
interval script to determine when it is appro-
priate to call sensing and actuating, routines.

The interaction manager was developed based
on the PNF calculus of Pinhanez and Bobick
([7]). This paper also provides detailed exam-
ples of the interval script of two scenes and a
general evaluation of the strengths and weak-
nesses of the paradigm.

2 A Novel Paradigm: Inter-
‘val Scripts

An interval script is a low level interactive
script paradigm based on explicit declaration
of the relationships between the time inter-
vals corresponding to actions and to sensor ac-
tivities. In an interval script the designer of
the interactive system declares temporal inter-
vals corresponding to the different actions and
events and the temporal relationship between
some of those pairs of intervals, i.e., whether
two intervals happen in sequence, overlap, or
are mutually exclusive. No explicit time refer-
ences are needed for either duration, start, or
finish of an interval.

2.1 Allen’s Interval Algebré

To model the time relationships between two
intervals we employ the interval-based time
representation proposed by Allen [1]. The rep-
resentation is based on the 13 possible primi-
tive relationships between two intervals which
are summarized in fig.- 1. _

.Given two events in the rea.l world, their pos-
sible time relationship can always be described
by a disjunction of the primitive time relation-
ships. For instance, the action of driving a car
must happen Whlle the car engine is on. Using

Allen’s temporal primitives, the interval asso-

ciated with driving the car either STARTSs or
FINISHes or happens DURING or is EQUAL
to the interval when the engine is on. That is,
the time relationship between driving and hav-
ing the car engine on can be described by the
disjunction of {START,DURING, FINISH, EQUAL}.
Of course, in a real occurrence of a,"driving ac-
tion, only one of the relationships actually hap-
pens.

Most of the interest in Allen’s representat_lon
for time intervals comes from a mechanism by
which the time relationships between the pairs
of intervals can be propagated through the col-
lection of all intervals. For instance, if it is

A .
] A EQUAL B

——a—
B
——— A BEFORE B ——— A iBEFORE B
i — ' -
—— A vEET B ——u— ‘A iMeET B
———— A OVERLAP B —— A 1OVERLAP B

e A o ms— .
e — A DURING B ——— A iDURING B

A A
[]]
- w— A START B , ——— A iSTART B

A FINISRB

A iFINISHB

Figure 1: Allen’s Interval Algebra: The possi-
ble 13 primitive time relationships between 2
intervals [1].

declared that interval A is BEFORE B, and B is
BEFORE C, Allen’s representation enables the in-
ference that A is BEFORE C. In fact, [1] provides
an algorithm, later revised by [9], which prop-
agates the time relations through a collection
of intervals determining the most constrained
disjunction of relationships for each pair of in-
tervals which satisfies the given relationships
and is consistent in time.

To use an interval script in the real-time con-
trol of an interactive system we developed an
interaction manager program based on the PNF
calculus of Pinhanez and Bobick ([7]). The in-
teraction manager is responsible for controlling
all sensor and actuator routines, deciding when
it is appropriate to call each routine and trans-
ferring values from sensors to actuators.. The
manager stores the interval script in an inter-
nal table and is able to maintain information
about events which happened in the past.

2.2 Connecting to the Real World

According to our proposal of mterva,l scripts
the interaction of a system is descnbed by tem-
poral intervals connected to sensors and actu-
ators. Connectors with real world events are
generally referred as ezternals. In the inter-
val script paradigm the desxgner has two basic
tasks: to define the actual sensing and actu-
ating routines corresponding to different exter-
nals and to determine the relationships between
the intervals defined by those externals.

'An ezternal is the concept abstracting the
internal mechanisms required to run the dif-

Muitiple events

activity
interval -»

event ——p
interval

oFf p———e——— ON ————————{ OFF
—

' E— S—
NOT_HAPPEN |~ HAPPEN ——| NOT_HAPPEN F HAPPEN NOT_HAPPEN
Trigger (activity MEET event)

OFF b——— ON == oOFf
'}
|

= HAPPEN{ NOT_HAPPEN

activity
interval -»

event —

interval NOT_HAPPEN

Figure 2: Intervals associated with a sensor, in
two different configurations.

ferent sensors and actuators. In fact, an ex-
ternal seamlessly encapsulates the connections
between a designer’s routine and the inter-
val structure used to manage the interaction.
Quite commonly more than one interval is as-
sociated to one external as shown later.

Sensors

In interactive environments sensors can play
the roles of chooser, locator, valuator, etc. (see
[2]). We have analyzed and implemented only
the binary case of a chooser sensor, that is,
a sensor which detects whether something is
happening or not. However, all sensors have
at least two time intervals naturally associated
to them: an activity interval which determines
when the sensor is active, and an event inter-
val which corresponds to an occurrence of the
sensor.

In the case of binary-choosing sensors the
designer of the interactive system has to pro-
vide a routine which receives as input a switch-
ing command (ON;, OFF, RESET) and returns
one of the following three values: HAPPENING,
NOT-HAPPENING, or UNKNOWN. During the time
the activation interval is or may be happening,
the interaction manager sends an ON command
to the designer’s routine,.and OFF otherwise. -

" Figure 2 shows the intervals associated with -

a sensor in two different situations. In the first
situation it is shown that the event interval can
occur many times while the activity interval
is'in ON. The second situation shown in the
bottom of fig. 2 exemplifies the case of triggers
which turn ‘on only once; this is achieved by
automatically incorporating into the script the
relationship stating that the activity interval
MEETs or happens BEFORE the event interval.

OFF j—— ON ——— OFF

desired

Interval —»

actual
interval

—_—

DOING

NOT_DOING |- —| DONE

Figure 3: Intervals associated with an actuator.

Actuators

In the case of actuators the designer has to pro-
vide a routine which accepts a switching com-
mand (ON, OFF, RESET) and returns a state-
descriptive message: NOT-DOING, DOING, or
DONE. The feedback from the routine is im-
portant because actions in the real world have
their own timing and priority, independent of
the desires of the designer or of the running
script. A situation might call for the playing
of a sound but the sound might be delayed by
a network problem or might not happen at all
if, for instance, another actuator has already
grabbed some required hardware connection.

Those characteristics of actuators are re-
flected in our system by the association of two
intervals to actuators: a desired interval and
an actual interval. Figure 3 shows the rela-
tionship between the intervals and the actuator
routine provided by the designer. When the
desired interval is happening, the interaction
manager sends ON messages to the designer’s
routine. When, and if the actuator goes on,
the returning DOING message tells the interac-
tion manager that the action is really occurring
and therefore that the actual mterval is hap—
pening.

When the desired interval finishes, the in-
teraction manager starts sending an OFF. mes-
sage to the actuator routine. However, the end
of the actual interval is decided by the rou-
tine itself: it may happen before, at the same,
or some time after the routine receives the OFF
message, depending on the propertles of the de-

vice being controlled.

Timers o

Although the general objective of this proposal
is to write scripts without explicit time refer-
ences, sometimes it is necessary to constrain
the duration of an action or a sensing activity.
In our conceptualization a timer is a special

case of an actuator, thus defining desired and
actual intervals. The desired interval is used

‘m‘gq' s oL .- i
processing | © ‘camoera ' St

{pfinder) -1 e veewa, %
‘___2221__——

’ posltianall data

L mes

'PNF-Based

Interaction G
Manager engine

video

video

projector
MIDI\ ommands

‘ . sound

uyn!huizer

“pértormer | *

speaker

‘ F1gure 4:. The basu: setup of .S’zngSong

to turn ‘the txmer on. and off the actual in-
terval — espec1a.lly its end — can be.used to
trigger other actions as the tlmer -expires,

3 Designing an Application
Wlth Interval Scrlpts

The methodology and algonthms described in
this paper have been tested in a story-based,
interactive system named SingSong. Figure 4
shows the basic structure of SingSong where a
large video screen displays the image of four
computer graphics-animated characters which
can “sing” musical notes (as produced by a syn-
thesizer). A camera watches the user or per-
former determining the position of her head,
hands, and feet. The body position is recov-
ered by the software pfinder developed at the
MIT Media Laboratory ([10]).

SingSong makes the user take the role of

a conductor of a chorus of four computer--

graphics characters.. The story starts with
' the “singers” animatedly talking to each other.
The' conductor enters and, to get the singers’
attention, raises her arms. This gesture stops
the chatting of only-three of the singers, since
one of them — singer#1 — does not stop until
being commanded twice and after complaining
by uttering sounds and increasing its size.
The next step for the conductor is to tine the
singers. A. tuning fork appears on the screen
and -the. conductor -has .to point to, one par-
tlcular singer and s1mula.te hitting the fork by
waving her arm. In that case the tuning fork
produces a musmal note which is immediately
repeated by the singer. However singer#1 con-
tinues to misbehave and does not produce the

right note unless the conductor knees dewnand
pleads. After all singers are tuned the conduc-
tor can start the song by r ralsmg “her arms. ‘Each
new note of the song is tr1ggered by-a raising of
the arms. When the song is finished, applauses
are heard, and the singers follow the conductor

“if she bows back. When the-conductor starts to

leave the scene, singer#1 strikes a néw routid
of complaints.

All the interaction is nonverbal, the user or
performer gestures and the CG-characters sing
notes and move. As we see, an important fea-
ture of SingSong is the fact that it immerses
the user in a simple story whlch unfolds as the

-mteractlon proceeds.

SingSong was designed to be en_]oyecl both
as an user experience and as a computer the-
ater performance. ' In the later case,; as de-
scribed -by Pinhanez in-[6], our system:pro-
vides computer-generated partners to a human
performer which are not only reactive but also
able to follow a pre-defined script. The tran-
sition between the performance and the user
mode is seamless, enabling the user to experi-
ence the story as lived by the performer. Typ- .

ically a performer is able to produce a more

vivid and interesting result for those observing
the scene from outside because she can clearly
react to the situations and expressively d1splays
her emotions. -

3.1 Interval Scrlpt of the First Scene

The ﬁrst scene of .S'mgSong employs several
different externals. Chatting is an actuator
which controls the sound and the mouth move-

-ments simulating the chatting action of each

singer. Four copies of Chatting are used, one
for each singer. BeQuiet and K BeQuiet2 are
trigger sensors which fire if the user raises both
arms above his head. StareConductor is an

actuator which makes. a. singer’s eyes follow

the conductor. around the space. ‘To provide
a short pause between the. conductor s gesture
and singer#1’s compla.mts we: define a 3-second
timer called ReactionTime. Fmally, Complain
is an actuator — used solely by singer #1 —
which controls the sounds and graphlcs related
to the complaining action. . -

Figure 5 displays a d1agram showmg how the
different mtervals of each external are tempo-
rally. related The dlagram shows the relafmon—
ships for singer#1 and singer#2, and the re-

BeQuiet

|

l

Chattirigk2

' StareConductor#2 1 singers

i
|
t
: #2 #3 #4
'
]
1 —
: BeQuiet2 .
! pe—
| chatting#l - A
i - ‘
ReactionTime mmigu o oy Singer #1
-_-1 omalaim
I
StareConductor#l
L]
BeQuiet’ :gﬁ:{ " Chatting#l
activity ISTART desired
Beguiet SIART' Chatting#2’
- activity ISTART desired
Chatting#2 MEET BeQuiet
desired - - QEFORE .event)
BeQuiet MEET BeQuiet
activity BEFORE _event
,BeQu'iet A 2;3’:{ stareconduct:oritz
event " |START - desired .
peguiet STANT' Beguietz
event | ‘.’ |START activity
" BeQuiet? ' MEET . BeQuiet2
activity .’ BEFORE event
BeQuiet2 - 2&‘,’:{ ReactionTime
. .event ’ ISTART: des'ired .
BeQuiet2 oAl StareConductor#l
evept ISTAFT ‘ desired
.Reaction ; pmger . Complaim:
desired

. Timeevent

Figure 5: Diagram of temporal relations and
interval script corresponding to-the first scene
of SingSong.

lationships for the other two singers are iden-
tical to those of #2. Figure 5 also-shows: the
interval script: corresponding to the first scene
(where the details of the G++-code are omlt’ced
for clarity).

- The interval script describes completely . how
each external relate to the others. Initially the
desired.interval of all Chatting actuators and
the-activity interval -of BeQuiet are defined
to-start together. - This: is shown in ‘the first
part of the script in fig. 5 which'states that the
activity interval of the sensor BeQuiet must
START or-EQUAL or iSTART the desired.interval
of Chatting#1 and Chatting#2. In the tempo-
ral diagram of fig. 5 we represent this-definition
by the dashed line joining the beginning of both

intervals. -

The next definition states that the event in-
terval of BeQuiet — BeQuiet.event — finishes
the desired interval of Chatting#2, i.e., the
singers are commanded to stop chatting when
the conductor raises his arms. BeQuiet.event
also turns off the activity of BeQuiet, what
makes this external a trigger sensor. Also, this
event starts StareConductor#2.desired. The
turning on and off of intervals is described by
the START or EQUAL or iSTART, and the MEET or
BEFORE relationships, respectively, as shown in
fig. 5.

However, since singer#1 does not stop
chatting until the conductor raises his arms
for a second time, BeQuiet. event does not
neither turn off Chatting#1 nor turn on
StareConductor#i. Instead, BeQuiet.event
triggers — START or EQUAL or 1START —
BeQuiet2. act1v1ty ,

A detection of an event by ‘BeQuiet2
shuts off the sensor’s activity, starts the
StareConductor#1, and “the desired inter-
val of timer ReactionTime. The end of
ReactionTime.actual starts the Complain ac-
tuator, finishing the first scene..

As it can be seen in fig. 5, all the structure
is described by the time relatlonshxps between
intervals and there are no explicit references to
duration of intervals. This scene of SingSong

is a good example of parallel actions that start

from a single event.

3.2 Interval Scrwt of ‘the Slngmg
Scene

The singing scene of SingSong is basically a
loop ‘of short interactions between the smgers
and conductor who triggers the niext note of a
song by raising his arms. Figure 6 shows the
temporal diagram of the singing scene and its
defining script.

The singing of each note starts with the ac-
tivation of theisensor ArmsUp which fires only
‘when both the conductor’s arms are up. When

ArmsUp.évent otcurs; its corresponding sen-

sor is turned off and the actuator SingNote is
started as described in the first two statements
of the interval script of fig. 6. It is important
to' notice that ‘actuators are- always “started”
through the desired interval. ‘'The beginning
of the actual interval is completely determined
by the output of its corresponding actuating

{ArmsUp Lgg— ArmsUp
1 reset

! —-—
! ! singNote 1
—— lag— SingNote
—— ; reset
| NotEndSong)
[_—"'""" <~ NotEndSong
1 F' -l reset
] [
! o Ends
| EndSong L‘_rZsegng
B 4
M'
H
ArmsUp MEET ArmsUp
activity BEFORE event
ArmsUp ggﬁi{ - SingNote
event ISTART desired
éingNote Eg‘LlJSA’I‘. SingNote
actual IFINISK desired
' singNote Mger NotEndSong
actual . activity
SingNote Mgt EndSong
. actual . T o activity
EndSong MEET EndSong
»activity BEFORE event
NotEndSong MEET EndSong
activity BEFORE event
EndSong MEET NotEndSong
activity BEFORE . event
NotEndSong MEET - NotEndSong
activity. BEFORE cvent
NotEndSong MEET ArmsUp
_event BEFORE reset
: NotEndSong MEET SingNote
event BEFORE reget .
NotEndSong MEET NotEndSong
event BEFORE reset
~ NotEndSong MEET . Endséng -

BEFORE

event reset

Figure 6: Diagra,m of tempora.l relationsand in-
terval script corresponding to the singing scene
of SingSong.

«

routme

Therefore, whlle SlngNote des:Lred is hap-
pening, ON commands are being sent to the rou-
tine which produces the next note of the song
but the -actual interval happens only when the
routine successfully manages.to send a MIDI
NoteOn command to the synthesizer.: The in-
terval SingNote.actual ends when the synthe-
sizer finishes producing the musical note, trig-
gering the end of SingNote.desired and the
start of two sensors, NotEndSong and EndSong

as described in the script of fig. 6.

NotEndSong and EndSong are complemen-
tary sensors which detect if the all the notes of
the song have already been sung. They consti-
tute the terminate condition of the loop which
plays the entire song. After being activated,
the sensors check an internal, common variable
which is updated every time a note is sung by
the singers. If the end of the song is reached
an EndSong.event occurs, triggering the end
of both sensors and the start of the next scene
(not shown in the script of fig. 6).

In the case that the song is not finished,
NotEndSong.event shuts off both sensors and
triggers a special interval associated with every
external called the reset interval. Whenever a
reset interval happens any intervals associated
with that particular external are set to an unde-
termined state even if the intervals had already
occurred. For example, if the reset interval
of a sensor happens both the activity, the
event, and the RESET interval itself are set to
an undetermined state. Basically this enables a
movement backwards in time which, when cou-
pled with a sensor of loop termination, makes
the construction of loops possible.

The script of SingSong includes many dif-
ferent constructions which are handled con-
veniently by the time interval relationship
paradigm. The detailed examination of those
constructions are beyond the scope of this pa-
per.

3.3 Interacting with SingSong

SingSong was designed considering both user
and performer interaction. The left picture of
fig. 7 shows a user reacting to singer#t1 com-
plaints (just after it-was commanded to stop
chatting); the right picture displays a miming
clown conductmg the chorus during the smgmg
scene.

An analysis of the SingSong experience is be-
yond' the scope of ‘this paper.- However, it is
interesting. to point out some observations we
made during the runs of SingSong with users
and performers which, in our opinion, under-
scores our interest in 1mmers1ve, story-based
systems.

Users seems to be quite- comfortable in ‘as-
suming the role of the conductor. In particular
they appear to have a great time conducting
the chorus. The simplicity of the interface cou-

Figure 7: Two scenes from Sithong. The left picture shows a user playing with the system,
while the right picture portrays a performance case.

pled with the joy of generating interesting mu-
sic provides a very pleasant experience. Also,
the well-defined end to the interaction (signaled
by the applauses) makes SingSong terminate
just after a dramatic climax. These are pre-
cisely the kind of effect we want in story-based
environments. '

SingSong in performance mode constitutes a
typical experiment in computer theater as de-
fined in [6]. The choice of a clown costume,
complete with red nose, seems to produce an
interesting effect of blending the real and the
CG world. The performer’s characterization as
a clown somewhat puts him in a world as fan-
tastic as the singer’s virtual world.

4 Discussion

The interval script paradigm proposed in this
‘paper is a first step towards more general tools
and paradigms for interactive script writing.
The method seems to have the required expres-
sive capabilities but, as the analysis of figures 5
and 6 quickly reveals, it still lacks clarity and
-simplicity. - Partial ‘blame should be put in the
task itself since it is very hard to describe and
visualize multiple, sometimes unrelated activi-
ties.

We see several reasons to use Allen’s algebra
to design interactive scripts based on temporal
intervals:

o No explicit mention of the interval dura-
tion or specification of relations between
the interval’s extremities is required.

o The existence of Allen’s algorithm for
propagation of time constraints allows the
designer to declare only the relevant rela-
tions leading to a cleaner script.

o The notion of disjunction of interval rela-
tionships can be used to declare multiple
paths and interactions in an story. As we
mentioned before, any instance of an ac-
tual interaction determines exactly one re-
lationship for each pair of intervals. Thus,
we can see the interval script as the dec-

. laration of a graph structure where each
node is an interval and whose links are
constrained by the structure of time. An

~ interval script describes a space of stories
and interactions. '

" We believe that the interval script paradigm,
as described in- this paper, still employs primi-
tives which are too low-level. Interval scripts
look like an “assembly” la.nguage for events
in time. However, throughout our experience
writing the interval script for SingSong, we

‘have detected patterns of interval interconnec-

tion which appear many times in different sit-
uations in the script. Those patterns can be
embodied in higher level externa.ls defining, for
example, chains of events, cond1t10nal branch-
ing, and loops.

It is important to notice that immersive envi-
ronments pose more difficult scripting problems
than normal computer interfaces. The current
interaction between computer and human is
mostly based on non-gestural events (key typ-
ing, locator, selector). Both the sensing and

Figure 8: An immersive, interactive environ-
ment portraying a visit to an ancient Yayoi vil-
lage.

the generation of gestural events require more
complex patterns of time interaction. In our
paradigm this was reflected in many instances
as, for example, in the need for desired and
actual intervals for actuators. . _
Currently we are also applying the inter-
val script paradigm for an immersive, inter-
active virtual reality environment where users
can walk through a virtual space and explore
the hyper-linked information space. Unlike the
conventional systems which use the same event
handling scheme for essentially different input
media, i.e. body gestures, mouse dragging, or
keyboard ‘strokes, the interval script will be
able to provide relaxed, multi-modal interac-
tive environment. Figure 8 shows thetest VR
environment which enables the user to walk
through an ancient Japanese village ([5]). The
system was originally developed using a con-
ventional event handling mechanism. We are
starting to re-code the interaction in this sys-
tem using interval scripts both as a wayto im-

prove the interface and as a test for the mterval o

script paradigm.

Des1gn1ng ‘and 1mplement1ng ‘SingSong ‘as
fast~as we did would not be possible without
using the’ mterval script paradigm. The inter-
val script provided a flexible method to change

the script as we are designing new routines and - :

testing the interaction. In spite of the low level
of the language the interval scnpt paradlgm
cons1derably mmphﬁed the task

Acknowledgments

‘The work of Claudlo thanez in the SingSong
project was supported by a-grant from the

110

Starr Foundatlon through the MIT Japan pro-
gram o

References
[1] ALLEN, ' J. F. Towards a general theory of dc-

tion and time. Artzﬁczal[ntellzgence 23 (1984)
- 123-154. .

[2] FUKUMOTO, M‘, MASE, __K., AND SUENA'G‘A,
Y. Fmger—pomter Pointing interface by image
processing. Comput. & Graphzcs 18 5 (May
1994), 633-642.

[3] GaLyEan, T. A. Narratwe Guidance of In-
" teractivity. PhD thesis, M.L.T. Media Arts and
Sciences ‘Program, 1995.

[4] LAUREL, B. Computers as Theatre. Aﬂdiéon-
Wesley, Reading, Massachusetts, 1991. '

[5] MasE, K., KADOBAYASHI, R., AND R. Meta-

museum: A supportive augumented reality en-

‘ vironment for knowledge sharing. In Intn’l

Conf on Virtual Systems and Multimedia’96
(Sept 1996). .

[6] PINHANEZ, C. s. Computer theater. Techmca.l
Report 378 M.LT. Media Laboratory Percep-
tual Computing Section, May 1996. ‘

- [7] PinHANEZ, C. S., AND BOBICK, A. F. PNF

Calculus: A method for the representatlon and
fast recognition of temporal structure. Techni-
cal Report 389, M.I.T. Media Laboratory Per-
ceptual Computmg Section, Sept. 1996.

[8] Tosa, N., AND NaKATSU, R. For mterac-

 tive v1rtual drama: Body communication ac-
tor. In Proc. of 7th International Symposium
on Electronic Art (Rotterdam, The Nether-
lands, Sept. 1996).

[9] ViLaN, M., KauTz, H., AND VAN BEEK, P.
Constraint propagation algorithms for tempo-
ral reasoning: A revised report. In Readings
in Qualilative Reasoning About: Physical Sys-
tems, D..S. Weld and J. de Kleer, Eds. Mor-
gan Kaufmann, San Mateo, Cahforma 1990,
PPp- 373—381 s

WREN C. R AZARBAYEJANI A “ ‘DAR—
RELL, T AND PENTLAND A. Pﬁnder Real-
time trackmg of the human body. Technical
"Report 353, M.L.T. ‘Media Laboratory- Percep-
tual: Computlng Seotlon, 1995 SR

