IRemote: a Platform for Controlling Public Displays with Mobile Phones

Olivier Liechti and Kenji Mase
ATR Media Integration and Communication Research Laboratories
Seika-cho, Soraku-gun, Kyoto 619-0288 Japan
{olivier,mase}@mic.atr.co.jp

INTRODUCTION

In his vision of ubiquitous computing [4], Mark Weiser
described devices of three different scales and form factors:
"tabs", "pads" and "boards". Today, devices belonging to these
three categories are already very common. However, there is
still very little support for interoperability between them. It is
possible to synchronize data between a PDA and a desktop
computer, but this is a rather limited function. More
interesting is the pick-and-drop interaction technique [3],
which makes the flow of information across devices easier.
Other approaches have been described in [1, 2], focusing on
the interaction between PDAs and electronic whiteboards in
collaborative work settings.

The design of the iRemote platform was motivated by this
lack of interoperability, with a special focus on two classes of
devices. Firstly, Web-enabled mobile phones (categorized as
"tabs"), which are personal, mobile and already widely
adopted. Secondly, public displays (categorized as "boards"),
which exist in various forms and scales. Examples include
street displays (used mainly for advertisement), panels used in
sport stadiums and concert halls, projection displays used at
conferences and in schools, electronic whiteboards, and
others.

The basic goal of iRemote is to make the increasing
interactive surface accessible to people, and to explore a new
generation of collaborative applications. By collaborative
applications, we do not restrict our scope to collaborative
work, but also consider entertainment and “"communityware"
applications. A simple example is to allow people to make
digital graffiti on street displays, by entering commands on
their mobile phones. Another example is an interactive game
played simultaneously by a very large number of spectators in
a sport stadium. In the remaining sections, we first describe
the architecture of the system and review its components. We
then describe a simple application developed on top of the
platform and report on its deployment and evaluation.

ARCHITECTURE

The architecture of iRemote, illustrated in Figure 1, includes i)
Web-enabled mobile phones, ii) a publicly available HTTP
server, iii) a display controller and iv) an actual display
hardware component.

The iRemote personal terminal

No custom hardware is required on the client side: any i-mode
phone can be used to access the system. Furthermore, it would
be easy to develop interfaces for other wireless WWW
platforms, such as WAP. The user interface provided on the
iRemote terminal is exclusively embedded within the micro-
browser. In other words, it currently consists of HTML pages,
where lists of hyperlinks simulate menus and are used to

iU EAVMEBBICLDIART « AT A OFIEHBER
FUET - UkbT«, H#EEZ, ATREEEREGBEEHIENR

trigger actions. User input is possible via checkboxes, radio
buttons, push buttons and text-input areas. As a simple
example of user interaction, consider a hyperlink labeled
"draw circle". When the user selects this hyperlink, a circle is
immediately drawn on the public display. Another example is
a HTML form, where the user can enter a text message. When
a "send" button is selected, the message appears on the public
display.

In order to initiate a session between a terminal and a public
display, the only operation required is to enter the URL
associated with the public display. Of course, this URL has to
be communicated to the user by some mechanism. For
instance, the URL can be shown directly on the display. Some
applications may require more subtle mechanisms, for
instance if access is restricted to a given user population.

Firewall
HTTP
server
Internet iRemote Display
service controller
Public
i-mode display
phone

Access me via
this url: http://www...

= A i S e \RR

Figure 2. A user controls the flow of information

The iRemote HTTP server

The role of the HTTP server is i) to generate the user interface
for the i-mode clients and ii) to interpret user actions and to
forward commands to the display controller. Obviously, the
HTTP server must be accessible to i-mode clients, which



means that it must be on the public Internet. Because the
iRemote display controller is likely to be protected by a
firewall, a bridging mechanism is necessary. Essentially, the
software running on the HTTP server consists of CGI scripts
that dynamically generate HTML pages. A number of
constraints are imposed by the use of i-mode. For example, the
fact that cookies cannot be used requires alternative
mechanisms for implementing sessions over HTTP.

The iRemote display controller

The display controller is the software component that drives
the display hardware. Hence, it depends on the technology
chosen for an actual deployment (e.g. some displays may
simply consist of a matrix of LEDs). Currently, we have only
used wall-projected displays driven by personal computers —
hence the problem is not different from controlling a desktop
monitor.

The current version of the display controller is implemented in
Java. More than a single application, it is an API that
integrates a collection of drawing primitives and animations
techniques (e.g. scrolling a text, fading an image in/out).
Application designers can use this API to implement their own
systems. Additionally, the display controller may support
some of the application logic. In the application described in
this paper, it is for example responsible for fetching
multimedia content in a backend database.

The iRemote public display

As we already mentioned, the choice for one particular
hardware technology depends on the situation. Whether the
screen is located indoors or outdoors, its size and its intended
use are some of the factors to consider. Support for a custom
technology needs to be integrated to the iRemote platform.

FIRST APPLICATION: FUNCTIONS AND EVALUATION

The architecture described in the previous section is very
general and was designed to support a range of interactive
applications. We already mentioned messaging and gaming —
other examples include electronic bulletin boards (situated in
real-world contexts), interactive art installations and novel
advertising techniques. To illustrate the use of the platform
and gain a better understanding of related issues, we designed
a first application and deployed it at the occasion of the ATR
Open House exhibition, held in November 2000.

Collaborative browsing

The first function of the application allows the users to control
the flow of information projected on the display (see Figure
2). The user interface supporting this task consists of a
hierarchical menu, where users can successively select
categories (e.g. "display news feeds", "display photographs")
and sub-categories (e.g. "international news", "Japanese
news", "photographs taken in Japan"). Hence, users do not
request for a very specific piece of content to be displayed on
the screen. Rather, they only indicate a category. The
application then selects some multimedia content that fits the
category and displays it. There is therefore an element of
surprise for the user, which is quite interesting. A collection of
software agents has been implemented to automatically extract
content from WWW sites and feed it into the database.

This function was very popular with users, probably because
the experience of controlling a large interactive surface is
empowering and enjoyable. But beyond this direct benefit, a
more interesting outcome of the system use resides in the
social interactions that it promotes. Indeed, at many occasions

we observed that people standing in front of the display started
to talk about the projected information. The information
provided a context for the starting a conversation and was a
catalyst for informal communication.

Synchronous and asynchronous messaging

The first function does not support the creation of content by
users, but only the display of already existing content. On the
other hand, the second function allows users to create text
messages and to feed them in the system.

The user interface supporting this task is very simple. Users
first click on a hyperlink labeled "Send a message", which
displays an HTML form. In a text area, they enter a message
using the keys of their phone. They can also identify
themselves, by entering a name in a field, or decide to remain
anonymous. Finally, a "send" button can be clicked, which
transmits the message first to the iRemote HTTP server, then
to the iRemote display controller.

When a new message is sent, it is immediately displayed on
the screen. This supports synchronous communication
between the people currently looking at the display. For
instance, imagine teenagers in Shibuya sending each other
(love) messages using a similar system. Also, messages are
stored in a database and periodically re-displayed on the
screen. This supports asynchronous communication within a
geographically bound community: it is possible to see
messages from people who were "there™ in the past.

In the first deployment of the system, this function was not
very successful, for several reasons. One of them relates to a
common user-interface problem, namely the difficulty to enter
text on a mobile phone. Although many visitors had an i-mode
phone, very few were able to use the text-entry system
efficiently. Another factor was that because of the nature of
the event, and the affluence of visitors, people did not spend a
very long time in front of the display.

CONCLUSION

The implementation and first trial of the prototype was quite
successful. The system was robust, there was little latency
between user requests and feedback on the display. As a
result, users seemed to enjoy the experience a lot. However,
the experience raised a number of issues, which will be the
focus of our future work.

REFERENCES

1. Greenberg, S., M. Boyle, and J. Laberge, PDAs and
Shared Public Displays: Making Personal Information
Public, and Public Information Private. Personal
Technologies, 1999. 1&2(3): p. 54-64.

2. Myers, B.A., H. Stiel, and R. Gargiulo. Collaboration
Using Multiple PDAs Connected to a PC. in proceedings
of the ACM Conference on Computer supported
cooperative work (CSCW'98). November 1998, Seattle,
WA. ACM.

3. Rekimoto, J. Pick-and-Drop: A Direct Manipulation
Technique for Multiple Computer Environments. in
proceedings of the ACM Symposium on User Inteface
Software and Technology (UIST'97), Banff, Alberta,
Canada. ACM Press.

4. Weiser, M., The Computer for the 21st Century, in
Scientific American. 1991. p. 94-104.



