Because of the numerous benefits, online shopping has been rapidly increased in recent years. Users can get better prices or product variety through the online shopping. However, an interactive problem is that users cannot get real-time recommendation or try on products through the traditional operation method (text, image, etc.). To resolve this problem, we present an interactive shopping interface which supports multiple users to perform real-time interactions together. In our approach, selecting, fitting, and delivering virtual objects are possible by using hand gestures. Two users can operate on the same selected object.

Our paper is organized as follows. In section 2, the overview of this system is introduced. In section 3, we illustrate 2 types of hand gestures that are used in the system and the method for recognizing and interaction. In section 4, we illustrate how hand gesture works in the designed operation flow. In section 5, we perform an evaluation of the system. Finally, we offer conclusions and consider future work.
2. SYSTEM OVERVIEW

In this paper, we present a hand gesture interaction system for multi-user shopping. Through this system, the users can see themselves with the system interface on a big display (50 Inch). They can use 2 types of hand gestures to select, control, and fit virtual objects which are also displayed on the screen. The crucial part of this system is allowing two users to operate on the same selected object.

This system is proposed to be used in a local fashion shops. First, the users can obtain recommendations from friends or salespeople. Then, they can quickly try on the desired product (piece of clothing, hat, bag, etc.) while standing in the front of a large display without going to a real dressing room. Finally, the users can survey the compatibility with the fashion product while watching the combination effect.

2.1. USER INTERFACE

The user interface of Coordinated Shopping contains two operational zones: Activity zone and Panel zone. Activity zone is a screen area that is designed to let users see themselves in the physical environment, and perform interactions with virtual objects through hand gestures. Panel zone is a screen area that is designed to allow users to launch different functions quickly ("Buy it", "Dress Room", etc.)

2.2. SYSTEM DESCRIPTION

The system hardware is constructed with one desktop PC, one big display and one depth camera (Microsoft Kinect). This confirms that our system is easy to install and adopt in a room-based environment. As for the software, we use the Kinect for Windows SDK. We obtain the depth data, color video streaming, and skeleton joint positions from Kinect SDK (the hand gestures are based on our own algorithms).

The depth camera is set in the center of the big display. The distance between the ground and the depth camera is approximately 180 cm. By setting up the system working environment, we ensure a good and steady operating performance, so that users can be detected from an effective distance (160cm ~ 220cm).

3. HAND GESTURE

The aim of the system is to let users simulate a veritable shopping experience by interacting with virtual objects only by hand gestures, and with no wearable device requirement or complex construction.

3.1. HAND GESTURE TYPE

The recent studies show that the hand gestures can be of 3 types: Natural, Sign Language and Symbolic. This system has adopted the use of natural language which can express syntactic and semantic information directly and it is easy to remember for users.

3.2. HAND GESTURE RECOGNITION

We use depth camera to obtain the user’s skeleton joint positions. We fetch some of the skeleton parameters (hands, shoulder, etc.), then calculate the hand’s movement in different directions (x, y, z) to define hand gesture’s toggle condition, and use skeletal tracking to fit the user’s movement.

3.3. HAND GESTURE INTERACTION

3.3.1. SWING HAND GESTURE

In this system, we use swing hand gesture to browse through virtual objects.
3.3.2. **SWING HAND GESTURE PROCEDURE**

To recognize Swing Hand Gesture, we can create a time frame so that we trace the hand movement continuously.

\[P_x - C_x < \text{Threshold} \] \hspace{1cm} (1)

The threshold value is defined by the system and it is a standard value needed in recognizing the gesture.

In case (1), as above, the system recognizes the shift to the right gesture. \(P_x \) is assumed to be 0; \(C_x \) is a positive number because of moving left to right. Therefore, the value of \((P_x - C_x) \) is a negative number.

\[P_x - C_x > \text{Threshold} \] \hspace{1cm} (2)

In the same way, in case (2), the value of \((P_x - C_x) \) is a positive number. Consequently, the system recognizes a Swing Hand Gesture if the whole value of (1), (2) is in the Threshold value range.

3.3.3. **PUSH HAND GESTURE**

In this system, we use push hand gesture to select and fit the virtual object.

\[P_z \text{ indicates previous hand’s Z position value, while } C_z \text{ indicates current hand’s Z position value.} \]

\[(P_z - C_z > \text{Threshold}) \land \text{areCloseXY()} \] \hspace{1cm} (3)

In the Z-axis coordinates, \(P_z \) is assumed to be 0, \(C_z \) is a negative number. The system will check the value change of Z which is based on a certain threshold value. Push Hand Gesture checks the boolean function \text{areCloseXY()} while comparing with Swing Hand Gesture. The \text{areCloseXY()} is defined to check the change of \(X,Y \) value in the time frame. In other words, it will compare the \(X,Y \) value of the previous position and current position when Z value is changed. The \text{areCloseXY()} returns “True” only when \(X,Y \) value is changed in a specified range. When both conditions of (3) are met, the Push Hand Gesture will be detected. On the other hand, the Swing Hand Gesture may also cause the Z value to change in some cases. If the value of \text{areCloseXY()} is “False”, the Swing Hand Gesture will be detected.

Double Push Gesture is determined through the same process with Single Push Gesture. This is done by checking left hand and right hand value simultaneously.

4. **OPERATION FLOW**

4.1. **SELECT MODE**

While user enters the camera detection area, the system state will automatically change to the Selecting Mode, and start to capture user’s hand gestures. In addition, Select Mode will be displayed in the title column so that it can provide real-time feedback to the user. In the
current state, the user can simply use Swing Gesture to flip the preview images of virtual objects. The current object being browsed will be set in the center of the defined array.

4.2. CONTROL MODE

After succeeding in finding the appropriate object, the user is able to use Single Push Gesture to select the desired virtual object accurately. At this stage, Select Mode will switch to Control Mode seamlessly. In the current state, the selected object will start to move along with the hand’s movement. The user can control the object and move it to the appropriate position on the big display.

4.3. FITTING MODE

Through the hand's movement, the user can place the selected object in the preferred location. In this state of affairs, the user can use Double Push Gesture to switch to the Fitting Mode. The virtual object will fit the user’s body position and movement.

4.4. MULTI-USER OPERATION

The scenario to be proposed assumes that user A and user B do apparel shopping together. User A uses the Wave Gesture and Single Push Gesture in the Select Mode and selects the virtual object for user B, then drags it to the appropriate location. Through the depth image highlighted in red in Figure 7, users can confirm that user A completely transfers the selected object to user B.
User B controls the object location appropriately and fits the virtual object on his/her body by using the **Double Push Gesture**.

User B decides to buy the selected object, and drags the virtual object to the “But It” button, which starts the Internet browser to view the details of the product.

5. **EVALUATION**

We perform an evaluation to observe the practical situation where multiple users make use of the system. We asked five people to use our system and answer a questionnaire that includes questions about system satisfaction, improvement, and user’s feedback.

The participants are all university students, aged 23–25; three people are right-handed and two people are left-handed.

5.1. **QUESTIONNAIRE**

At first, we allow users to become familiar with the hand gestures before performing multi-user interactions. For this purpose, 5 users practiced the whole set of gesture (**Wave Gesture**, **Single Push Gesture**, **Double Push Gesture**). Then, we proposed an evaluation experiment, and asked users to evaluate the system through usefulness, intuition, ease of operation and overall satisfaction.

<table>
<thead>
<tr>
<th>Type</th>
<th>Usefulness</th>
<th>Intuition</th>
<th>Ease of Operation</th>
<th>Overall Satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

1: Very Bad 2: Bad 3: Normal 4: Good 5: Very Good

Table 1. Questionnaire for System

We obtained feedback from the 5 users and most of them appeared satisfied with our system. We particularly obtained a high score in the intuition and ease of operation parts.

5.2. **RESULTS**

Through the questionnaire, we have learned that the users found our system interesting and with an intuitive interface. Comparing with previous shopping systems, the users found it is very easy to use as well.

However, users did not find our system very smooth yet. The reason is that while users use the fitting function, it does not seem very realistic. Users want to try virtual objects on the front, rear, and side of their body. In our system, the supported virtual objects are provided only for the front. Therefore, users find this kind of fitting not flexible compared to fitting real clothes.

Some users also require the system to adjust the graphic objects to fit their shoulder width automatically, as well as try on more graphic objects simultaneously. In our future work we aim to fit our system to these requirements and enhance the flexibility of our system.

6. **RELATED WORK**

Operating with virtual objects using hand gestures is a well-studied area of research in the recent works of human computer interaction. As related work, Head Mount Display (HMD) 7) is used to interact with 3D objects in a 3D virtual environment. The HMD can be used to locate the user’s exposed facial skin. Using this information, a skin model is built and combined with the depth information obtained from a stereo camera. The information when used in tandem allows the position of the user’s hands to be detected and tracked in real time. Once both hands are located, the system allows the user to manipulate the object with five degrees of freedom (translation in x, y, and z axis with roll and yaw rotations) in a three-dimensional virtual space using a series of intuitive hand gestures.

In our implementation, the processing of hand gesture is based on the depth data and skeleton data that is tracked by the depth camera. Users can directly operate the virtual object by using hand gestures without any hardware devices or complex arithmetic calculations.
This is the main difference between our system and other related systems.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we presented Coordinated Shopping, an interactive shopping system that allows two users to select, pass and fit the same virtual object through hand gestures in a room-sized environment. Our work contributes a novel interactive shopping experience with multiple users.

The merits of our system are as follows.

First, we use “Title Column” to display the current operation mode and “Panel Zone” to support the user to switch to other functions frequently. This provides a vivid feedback to the users. Second, we mainly designed two types of hand gestures, which the users can remember with little effort. Third, the gestures that we used are natural and it is comfortable for users to perform interactions with virtual objects. Also, there is no physical stress while using the Swing or Push gestures. Finally, the gesture recognition is rapid and steady in a fixed range, with either one or two users.

Through the evaluation experiments, we obtained a positive feedback from the users. However, the results also show that we have the potential to enhance the interactive ability with multi-user operation.

In the next step, we plan to include more intuitive gestures using some other body regions (head, legs, etc.), to perform a more functional interaction with the system.

ACKNOWLEDGEMENTS

This research was supported by the program for fostering advanced ICT professionals in the era of massive information contents, which was conducted by the University of Tsukuba and Rakuten, Inc.

8. REFERENCES

