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Abstract: This paper proposes a robot interface design method by which we can control humanoid end-
effector movements with such a low-dimensional input device as a gamepad. In our proposed method, first,
the numbers of movement trajectories to accomplish different tasks are generated using a simulated robot
model and stored in a database. Second, a human user demonstrates the current task-related behavior.
Third, the corresponding stored movements for the demonstrated human behavior are sparsely extracted by
a sparse coding method. Finally, the sparsely extracted movement bases are linearly combined to generate a
novel movement to accomplish a new target task where the linear weight parameters are modulated by the
gamepad. We easily generated such complicated hand movements as spiral motions on a small humanoid
robot with our proposed interface.

1. INTRODUCTION

As robotic technologies continue to progress, robots are

expected to support daily human activities, engage in

manufacturing, and assist disaster-recovery efforts. To

use robotic devices for supporting human activities, we

must properly design an interface that connects human

users and robots. Using vision systems to monitor hu-

man gestures for recognizing user intentions is a popu-

lar approach [1], [2], [3]. A hand movement recognition

device such as a Wii controller has also been used as a

robot interface [4]. Measuring myoelectric signals is an-

other promising approach to design an intuitive interface

to control robotic devices [5], [6], [7]. Brain machine inter-

faces are also getting attention as a potentially very useful

robot control interface [8], [9].
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On the other hand, one of the most popular interfaces

to control high-dimensional systems is a gamepad. Us-

ing such a low-dimensional input device as a gamepad to

control high-dimensional systems, including in-game char-

acters, is a very common interface implementation.

Interestingly, users do not need to spend a significant

amount of time for training to achieve a certain skill level

to properly control the in-game characters. This is prob-

ably because the design that connects the input device to

the high-dimensional system is proper. The development

of an proper robot interface, which allows users to control

a complicated robotic device without significant effort, is

critical.

To develop such a useful robot interface, we need to find

proper constraints to connect low-dimensional input de-

vices with a robot system. In previous studies, manifold

learning methods, e.g., [10], [11], have been used to find

low-dimensional representations of high-dimensional hu-

man movements as proper constraints [12], [13], [14], [15],

[16], [17]. However, in these previous approaches, since

an appropriate low-dimensional manifold needs to be ex-

tracted for each target behavior, they are not suitable for

generating a wide variety of movements.
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図 1 Schematic diagram of our proposed framework. In our proposed method, 1) num-

bers of movement trajectories to accomplish different tasks are generated with a

simulated robot model and 2) stored in a database; 3) human user demonstrates

current task-related behavior; 4), 5) corresponding stored movements and param-

eters to demonstrated behavior are sparsely extracted by a sparse coding method;

6), 7) sparsely extracted movement bases are linearly combined to generate novel

movement to accomplish a new target task where linear weights for combinations

are controlled by gamepad.

On the other hand, task-space control is a standard

approach to generate high-dimensional whole-body hu-

manoid movements that correspond to task-relevant end-

effector trajectories [18], [19], [20]. However, it is not very

easy to generate three-dimensional task-space hand move-

ments by a gamepad when users need to generate compli-

cated hand trajectories. In addition, since users need to

continuously control a humanoid end-effector using the

input device, generating fast movements is also difficult.

In this paper, we consider a different approach for a

robot interface design. We adopt the ideas of movement

primitives [21] or motor tapes [22] to generate robot move-

ments. Previous studies showed that these approaches are

useful for generating a variety of movements from previ-

ously learned motions to adapt to the surrounding envi-

ronments and the given tasks [22], [23]. In our approach,

we first store different trajectories as basis movements

that can be considered movement primitives. Then we

use a sparse coding approach by which a newly observed

movement is represented with sparsely selected basis tra-

jectories. By linearly combining the selected basis trajec-

tories, users can generate different types of movements,

where the combinations of the bases is determined using

a low-dimensional input device such as a gamepad.

This paper is organized as follows. In Section 2, we

explain our strategy for constructing a low-dimensional

interface for humanoid end-effector control with a sparse

coding approach. In Section 3, we introduce our exper-

imental setups that are composed of a small humanoid

robot platform and a low-dimensional input device. In

Section 4, we show our experimental results using the

simulations and a real humanoid robot. We also present

control performances with a designed humanoid interface,

which we compare with a standard task-space control in-

terface.

2. Methods

Here we introduce our interface design method for hu-

manoid end-effector control. Figure 1 shows the inter-

face design strategy. First, we present how we store basis

movements into a database by using a simulated environ-

ment. Second, we introduce how to extract basis move-

ment trajectories from the stored movements. Finally,

we describe how to generate humanoid end-effector move-

ments by using a low-dimensional input device such as a

gamepad based on the extracted bases.
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2.1 Storing movement bases

We first store numbers of end-effector movement tra-

jectories in a movement database by using a simulated

humanoid robot model. It is easy to design wide variety

of movements for accomplish different tasks in a simulated

environment. We then solve inverse kinematics problems

to generate corresponding joint movements when we con-

trol a humanoid platform. A simulated robot generates

numbers of task-related hand movements and these end-

effector trajectories are stored as movement bases. Here

we assume that we have N trajectory bases, where each

end-effector trajectory basis has m sample points. Then,

the movement basis storage can be represented as:

D = [b1,b2, . . . ,bN ] , (1)

where bi ∈ Rm denotes each trajectory basis.

2.2 Extracting movement bases

We then linearly combine end-effector trajectory ba-

sis, where the trajectories are sparsely extracted from the

movement database. For selecting these basis, we consider

using a sparse coding method based on L1-norm regular-

ization [24]. Concretely, we solve a sparse linear regression

problem:

x∗ = argminx||y −Dx||22 + λ||x||1, (2)

where x denotes weight parameter vector and y denotes an

observed hand-movement trajectory of a human demon-

strator. Sparsity of the solution depends on the parameter

λ. x∗ denotes optimized weight parameter.

2.3 Generating movements by constructed inter-

face

Finally, we generate task-related end-effector move-

ments by controlling the weight parameters that corre-

spond to the extracted basis trajectories. To control the

weight parameters, we use low-dimensional input device

such as a gamepad. By using the modified weight param-

eters, end-effector movement trajectories are represented

as:

ỹ = Dx̃, (3)

where

x̃ = x∗ +∆x (4)

denotes the modified input parameter vector composed of

the parameter find in the reconstruction process x∗ in (2)

and the low-dimensional control input ∆x. ỹ denotes the

newly generated robot movement trajectory.

図 2 (A) 25-DOF small humanoid platform, (B) Low-

dimensional input device. The device has two of two-DOF

analog joysticks.

3. Experimental setups

3.1 Small humanoid robot platform and Low-

dimensional input device

We use a 25-DOF small humanoid platform (see also

Fig. 2(A)) to evaluate our proposed interface design

method. As an input device, we use a gamepad which

has two of two-DOF analog joysticks (see also Fig. 2(B)).

The analog joystick inputs were used to determine the pa-

rameter inputs ∆x in (4). Then, a trajectory composed of

the linearly combined bases was used to control the small

humanoid platform.

図 3 An example of the stored spiral trajectories that are used

in our experiment, and corresponding robot postures.

3.2 Constructing spiral movement database

We constructed end-effector movement database using

a simulation environment of the small humanoid platform

depicted in Fig. 2(A). In this study, we consider generat-

ing complicated hand movements such as spiral trajecto-

ries. In our experiment, 96 spiral trajectories are gener-

ated in the simulated environments, where the spirals with

four different sizes, three different length, and eight dif-

ferent rotation angles were considered, i.e., 4×3×8 = 96.
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Then, the generated trajectories were stored and repre-

sented in a matrix from D in (1). Figure 3 shows an

example of the stored spiral trajectories that were used in

our experiment, and corresponding robot postures.

3.3 Spiral movement demonstration

From the constructed movement database, we sparsely

extracted four movement bases by observing a hand move-

ment y demonstrated by a human user. As examples, a

human user demonstrated three different types of spiral

motions as depicted in Figs. 4(A),(D) and (G). Then, for

each observed spiral movement, corresponding trajectories

in the movement database are sparsely selected by the ba-

sis selection method presented in (2). The four movement

bases are selected based on the absolute value of the ele-

ment of the optimized parameter vector x∗ in (2). Note

that we used lambda parameter λ = 0.001 so that less

than ten movement bases were sparsely selected from the

database which includes 96 bases. In other words, based

on the absolute value of the element of the optimized pa-

rameter vector, we finally chose the four bases from the

less than ten bases selected by the sparse coding method.

3.4 Spiral movement generation

The parameters for the selected basis trajectories are

controlled to generate modified spiral movements. These

parameters were controlled by using the gamepad (see

also Fig.2(B)). The two of the two-DOF joysticks were as-

signed to control the selected four parameters. We show

that the small humanoid platform can generate similar

but different spiral hand movements from the observed

spiral trajectories by controlling parameters with using

the gamepad. We then also show that we can control the

small humanoid robot to generate the modulated spiral

movement.

4. Results

4.1 Generating spiral movements

We first showed that we were able to generate spi-

ral movements by using the low-dimensional input de-

vice. Figure 4 shows the results of the interface construc-

tion procedure. Human user demonstrated different spi-

ral movements that have three different shapes (see also

Figs. 4 (A),(D) and (G)). For each demonstrated move-

ment, the four movement bases were selected by using (2)

(see also Figs. 4 (B),(E) and (H)) and the correspond-

ing parameters were controlled by using the gamepad. In

Figs. 4(C),(F) and (I), modulated spirals are presented

for each different demonstrated movement. By using the

constructed robot interface, we showed that the user was

able to easily control the end effector of the small hu-

manoid robot by using the gamepad input device based

on the sparsely selected basis trajectories. Figure 5 shows

the real humanoid robot movement when the robot gen-

erated the modulated spiral movement which is presented

in Fig.4(C).

図 5 Generated spiral movements on real humanoid platform.

Red disks represent end-effector positions.

4.2 Spiral movement control to generate a de-

sired trajectory

We then showed that the constructed humanoid inter-

face were able to be used to follow a target spiral move-

ment by controlling the small humanoid robot with using

the gamepad input device. Although generating a spiral

movement by using the constructed robot interface was

easy, still, some training trials were necessary for a user

to follow the target spirals. We show the learning perfor-

mance of a user to generate a target spiral movement in

Fig. 6. Within 30 trials, humanoid end-effector control

performance was much improved, where each trial only

takes around one second.

As a comparison, we also asked the same subject to

generate a target spiral movement by using an control

interface by which the hand position in a cartesian coor-

dinate were directory controlled by the two-DOF analog

joystick. Figure 7 shows the comparison of the generated

spiral movements. As in Figure 7(B), direct control of the

hand position for generating the spiral trajectory by using

the gamepad was very difficult while, as in Fig.7(A), it was

easy to generate spiral end-effector movement to follow the

target trajectory by using the proposed interface. These

results clearly show that our proposed approach was much

easier to be used to generate a complicated end-effector

trajectory such as a spiral movement.

情報処理学会 インタラクション 2016 
IPSJ Interaction 2016

163C45 
2016/3/4

© 2016 Information Processing Society of Japan 950



図 4 Generated spiral movements. (A)-(C) correspond to first observed movement, (D)-

(F) correspond to second observed movement, (G)-(I) correspond to third observed

movement. (A),(D),(G): Demonstrated and reconstructed spirals. Demonstrated

movements were measured by using Visualeyez real-time motion capture system

(Phoenix Technologies Inc.). (B),(E),(H): Selected basis end-effector trajectories.

(C),(F),(I): Modulated spirals by using proposed interface.

図 6 Spiral control performance using the proposed interface.

Within 30 trials, humanoid end-effector control perfor-

mance was much improved, where each trial only takes

around one second. Mean and standard deviation of er-

rors for every five trials are plotted.

図 7 Comparison of the generated spiral movements. This re-

sults clearly show that our proposed approach was much

easier to be used to generate a complicated end-effector

movement such as a spiral trajectory. (A)Proposed.

(B)Control interface by which the hand position in a

Cartesian coordinate were directory controlled by the two-

DOF analog joystick.

5. CONCLUSIONS

We proposed a humanoid interface design method. We

showed that we can easily generate spiral hand movements

on a small humanoid platform by using the gamepad in-

put device. Humanoid robot movements were controlled

by the combined basis motion trajectories, where the pa-

rameters to combine each basis were determined by the

input command specified with the gamepad. The basis

trajectories were sparsely extracted from the stored spiral

trajectories by using the sparse coding method. Differ-

ent spiral movements were successfully generated by using

the constructed interface. Since the stored basis trajecto-

ries were generated in the simulated humanoid robot sys-

tem, it would not be always suitable to code the observed

human movements. In such case, we can possibly use a

dictionary learning method [25] to adapt the stored basis

motion to observed human movement trajectories. There-

fore, in our future study, we consider using this kind of

adaptation mechanism to refine the stored basis trajecto-

ries to properly represent observed human behaviors.
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