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Abstract: The increasing importance of sleeping quality and the awareness of sleep related disorders have
led to emerging research in the field of wearable sensor with the purpose to make the sleep sensing become
more comfortable and accessible. Among various methods, the use of audio sensor is known to be one of
the most direct approach. However, further research using audio sensor to detect sleeping-state and apnea
should be done to explore various new contexts and possibilities. Thus, this study proposes a wearable
system consisting two microphones in the form of open-air microphone and contact microphone to improve
the number of recognized contexts and this system is able to detect breathing, heartbeat, swallowing, body
movement, and oral sound for the further use of sleeping-state and apnea severity detection. Audio data
combination methods of Aggregation Methods and Stacking Methods were evaluated to improve the accu-
racy of the context detection. The Stacking Method with Support Vector Machine Polynomial Kernel as
both first and second level classification resulted the best performance of 85.1% accuracy and 18% average
improvement.

1. Introduction

As one-third of human life, sleep is having a major role

to maintain health and function as human[1]. Lacking

in quality of sleep correlated with several body dysfunc-

tion and in long term it is also causing serious physical

and mental disorders. Several complications associated

by this situation are cardiac and cerebrovascular prob-

lems[2], traffic accidents, mood swings, and depression.

Data also showed that this lack of sleep quality related

with financial also social impact due to deficient attention

and premature judgements in many vital areas[3]

Research in sleep sensing field is emerging due to the

increasing prevalence and influence of sleep disorders in

daily life[4]. These research are mainly focusing in find-

ing alternatives of diagnosis modalities in sleep disorder

and sleep quality detection, since currently polysomnog-

raphy (PSG) is still being the standardized procedure as

detection in hospital[5]. This procedure is known to be

complex, less comfortable, and expensive also time con-
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suming. Thus, the urge for a wearable detection system

in sleep sensing especially sleep disorder diagnosis has en-

couraged studies in this field. Imtiaz et al. (2021) in

their review study of Sensing Technologies for Wearable

Sleep Staging presented the information that the number

of publications in wearable sleep sensing has been increas-

ing since 2014[3].

Among overall sleep disorders and problems, breathing-

related sleep disorder is one of the most concerning prob-

lems[4]. Sleep apnea is a major breathing-related sleep

disorder indicated by pauses of breathing during sleep[1]

which affects 22% of male population and 17% of female

population[6]. However, this number might be larger as

the data shown that 80% of apnea patients are remain un-

diagnosed[7] due to the low awareness of the disease and

the complexity of the detection using PSG in hospitals[8].

Apnea events during sleep are commonly detected by

analyzing several bio-signals such as respiratory, heart-

beat, movement, snoring, oxygen saturation, pharyngeal

movement, and more. Several approaches used by wear-

able devices are based on few-channel electrocardiogram

(ECG), accelerometer, electromyogram (EMG), electro-

oculogram (EOG), electroencephalogram (EEG), oronasal

airflow, audio sensors, and plethysmograph[3], [8]. How-



ever, detecting breathing pattern using airflow is usually

considered as the most straightforward approach for de-

tecting breathing disorders including sleep apnea[8].

Detecting breathing pattern using airflow sensor might

be the most straightforward approach but at the same

time it can be considered as not a comfortable and wear-

able solution as its placement can block or disturb airways.

Considering this reason, we saw the use of audio sensors

as a more wearable approach with similar purpose.

Wearable devices to detect apnea and sleeping state us-

ing popular modalities such as accelerometer, ECG, EEG,

and plethysmograph can only detect limited type of con-

texts (2 or 3) simultaneously[3]. The popular examples

are the use of accelerometer to only detect movement or

ECG to detect heartbeat. While actually there are vari-

ous contexts that can be used to detect apnea and sleeping

state[3], [8]. Audio sensors are known for the ability to ob-

tain a lot of signal information. In the field of bio-signals

and bio-contexts recognition, the use of a common open-

air microphone is known for it’s capability to detect loud

human sounds such as breathing[8], body movement, and

oral sounds such as snoring[3]. While in order to detect

intrinsic body sounds such as pharyngeal movement or

swallowing and heartbeat pattern, a modified approach of

contact microphone can be seen as an alternative. Thus,

combining more than one type of audio sensors can ex-

pand the number of recognized contexts.

Among 131 studies reviewed by Imtiaz et al. in 2021,

only three of them mentioned the use of audio sensor.

Two of the mentioned studies used a single microphone

while the other one used a microphone and accelerometer

to detect respiratory and body movement. However, none

of the study mentioned in the paper used the combination

use of multiple audio sensors[3].

Thus, this research proposes a wearable device for de-

tecting human contexts related with sleep-related disor-

ders especially sleep apnea using the combination of two

audio sensors in the form of contact microphone and open

air microphone. The resulting system is aimed not to only

as alternative for sleep disorder detection but to monitor

and improve human sleep quality in general.

The contributions of this study are as follows:

• This study proposed novel and multiple contexts then

outputted the number of each context, thus this value

can be used not only to detect apnea or other sleep-

ing disorders but it can also be used in daily life to

monitor sleep quality.

• Device presented in this research uses two different

audio sensors in the form of open-air and contact mi-

crophones to detect the contexts.

• This paper compares three different methods to com-

bine data of the two audio sensors to improve the

accuracy of the context recognition.

2. Related Research

2.1 Sleep Quality and Sleep-Related Disorders

Recently, concern in maintaining sleep quality and dis-

eases associated with sleep disorders are growing. This is

due to the increasing awareness of the indication that the

lack of sleep quality also sleeps disorders can lead to grow-

ing health burden in modern societies[12]. Lack of quality

of sleep causes serious physical conditions such as car-

diovascular disease, cognitive impairment, and metabolic

dysfunction[1], [12]. Sleep quality also proven to be highly

associated with serious neurological disorder and mental

conditions. Disturbance in sleep quality can lead to se-

vere mood swings and depressions. This condition also

recently associated with financial and economic loss due

to the high cost of medications, decreased productivity,

road accidents, and premature decisions which caused by

the lack quality of sleep.

Sleep disorders are conditions that caused sleep im-

pairments and decreasing quality of sleep. Several major

sleep disorders are insomnia, circadian rhythm disorders,

breathing related sleep disorder, hypersomnia/narcolepsy,

parasomnia, and restless legs syndrome/periodic limb

movement[1]. Compared to the other sleep disorders,

the prevalence of sleep-related breathing disorders has

raised the most attention[4]. And among the sleep-related

breathing disorders, Apnea or Sleep Apnea Syndrome is

introduced as the most common sleep-related breathing

disorder with an increasing prevalence over the last two

decades[4].

2.2 Apnea and the Detection Approaches

Apnea or Sleep Apnea Syndrome is a condition indi-

cated by disturbed breathing during sleep[13]. Apnea

events are usually followed by arousals and consciousness

also fluctuating heartbeat pattern and often associated

with loud and frequent snoring during sleep[2]. One apnea

event is described as a stop of breathing for more than 10s

period and the severity of apnea is assessed based on the

Apnea-Hypopnea Index (AHI) which categorized as mild

(5-15 apnea events/hour), moderate (15-30 events/hour),

and severe (>30 events per/hour)[14].

Along with the other sleep disorders, sleep apnea is



also diagnosed in a certified sleep center or hospital with

polysomnography (PSG) as the standardized procedure.

Polysomnography consists nine sensor leads; three elec-

troencephalography (EEG) leads, two electrooculography

(EOG) leads, and three electromyography (EMG) leads,

and a single electrocardiography (ECG) lead along with

nasal pressure sensor, thermistor, and two belts with res-

piratory inductive plethysmography to record the respira-

tion activity[4].

This procedure is known to be very uncomfortable, ex-

pensive, and non-accessible. Thus, various studies are

conducted to find alternatives for simpler recognition of

bio-contexts related to the disease detection adapting the

mentioned sensors in a standard polysomnography pro-

cedure. Nasal pressure sensor, thermistor, and belts res-

piratory inductive plethysmography are used for detect-

ing respiratory events and patterns to estimate the apnea

severity using the mentioned AHI score[15]. This method

of detecting breathing is known to be the most direct

approach since apnea is a breathing related sleep disor-

ders[8], however the use of mentioned sensors might be

the most direct, but it is often not the most comfortable

to use during sleeping.

The next modality and also one of the most popular to

be used in wearable devices to detect apnea is the use of

pulse oximetry to measure O2 saturation[8] since it may

fall dramatically during an apneic event due to the stop of

breathing. The stop of breathing and apnea event causes

arousal as mentioned previously, thus EEG, EOG, EMG,

also accelerometer are used for detecting brain activity

and sleep stages[3], [15]. Apnea events also indicated

by the changes of heartbeat pattern due to respiratory

changes. Another well know indication of sleep apnea is

snoring, thus audio sensors are also used to detect snoring

and it can also used to detect breathing pattern[4], [8].

Recent research by Yagi et al. in 2014 and Bhutada et

al. in 2020 mentioned that swallowing or pharyngeal im-

pairments presence in apnea patients[16], [17]. Yagi et

al. concluded that swallowing frequency during sleep in-

creases with the increasing of apnea severity [16] while

Bhutada et al. mentioned in their review study that 65%

(n =11) of the paper they reviewed revealed the presence

of pharyngeal swallowing impairments in patients with ap-

nea[17]. However, we have not found any study on wear-

able devices using this novel swallowing context to detect

apnea or sleeping state [3], [4], [8].

Thus, contexts such as respiratory or breathing pattern,

heartbeat, body movements, snoring or speaking sounds,

oxygen saturation[8], also swallowing or pharyngeal activ-

ity[16], [17] are known to be related and useful to detect

apnea and potentially sleeping state or other sleep related

problems.

2.3 Multiple Sensors and Audio Sensor for Sleep

Sensing and Apnea Detection

Among modalities and context, the use of EEG, ac-

celerometer, pulse oximetry and ECG are mentioned to

be the most used sensors in wearable devices to detect

apnea and sleeping state[3], [8]. However, the mentioned

sensors can only detect limited number of 2-3 contexts,

while as mentioned before that there are various type of

signals can be used to detect the problems. Mentioned

approaches also did not address the most direct context

of breathing or respiratory pattern. In order to improve

the number of detected contexts, a multi-sensors approach

was investigated. Some wearable devices using this ap-

proach was mentioned by Imtiaz et al. and Mendonça et

al. in their study such the use of audio sensor along with

accelerometer[3], [8], [18]. Study by Kalkbrenner et. al in

2019 used audio sensor and accelerometer for automated

sleep stage classification resulting in 86.9% accuracy for

sleep/wake classification. However, the targeted contexts

of mentioned system was limited to detect cardiorespira-

tory pattern and body movement[18].

The use of audio sensor is known as a wearable alterna-

tive for in sleep sensing and apnea detection device. Au-

dio data is also well-known to contain extensive amount

of data and information. The use of common or open-air

microphone is also known to be able to detect respiratory

pattern[8], while the use of contact microphone can detect

intrinsic biological sounds. Configurations and combina-

tions of microphones can obtain various contexts which

are important in sleep sensing such as breathing pattern,

snoring and other voice such as speaking, movement, swal-

lowing, and others[4]. Thus, the use of multiple audio sen-

sors as mentioned before have the possibility to improve

the number of detected contexts.

In the construction of audio based wearable system

for sleep sensing and apnea detection, several parame-

ters should be considered such as the most suitable place-

ment and attachment of the device to the body[19], [20],

[22], window segmenting sizes, feature values to be ex-

tracted[21], [22], and also the most effective machine learn-

ing algorithm as detection modality[8].

Placement and attachment of sensor to the body is es-

sential especially in the use of audio sensors since they



are directly affect the quality of the data. Positions

around neck such as near carotid artery and suprasternal

notch[22] are considered the suitable position for wear-

able devices to detect bio-signals such as tracheal sounds,

breathing, snoring[23], swallowing sound, and even heart-

beat[19], [22].

Once the signals of the body sounds are obtained, vari-

ous feature extraction methods can be used as preprocess-

ing before inputting the data to any artificial intelligence

algorithm. Time domain, statistical features, and also fre-

quency domain features often used as features[8]. Speech

recognition based approach also considered in several au-

dio context recognition in the field of sleep sensing and

apnea detection. Thus, Mel’s frequency cepstral coeffi-

cient (MFCC) is also preferred to detect oral sounds such

as snoring and speaking during sleep and also to detect

breathing events with the accuracy of 81%[8], [9].

Various research compares sleep sensing and apnea de-

tection using multiple machine learning algorithms. How-

ever, the use of simple algorithms such as support vec-

tor machines and random forest achieved the best out-

put[8] with the accuracy of 75.76%[10] and 86.3%[11] re-

spectively. Both are also popular to be implemented in

wearable devices[8].

2.4 Combination of Multiple Sensors

The use of multiple audio sensors in wearable device to

detect human context can capture a broad range of ac-

tivities and even small gestures and very sensitive signals.

The combination of the sensors using the correct method

can increase the accuracy and improve the results of the

system[24].

One of the common approach of the combination of mul-

tiple sensors in the field of wearable devices is Aggrega-

tion Method. Aggregation method combines extracted

features from sensors data to construct the training and

testing dataset for the classification model[24]. Though

this method is the most common approach, Garcia-Ceja

(2019) in their work mentioned that this approach may

also not optimal due to the different statistical proper-

ties of each type of sensor. The same research proposed

what the author mentioned as multi-view stacking, that

can be simply explained as a multi-level classification.

The method trained first-level learner for each sensor and

then the outputs are trained using stacked generalization.

However, the mentioned research used accelerometer and

sound sensor in the field of Human Activity Recognition

(HAR) to detect activities such as standing, sitting, walk-

ing, and lying[24] and the used of these approaches for the

combination of audio sensors in sleep sensing and apnea

detection hasn’t been evaluated yet[3], [8]. On the other

hand, research by Valipour et al. in 2017 used two audio

sensors to detect vital signs of heartbeat and respiratory

with the purpose of general health monitoring, however

this research did not do any combination approach nor

specified their purpose with more number of contexts[25].

Thus, this study would like to evaluate the use of mul-

tiple audio sensors as wearable device in recognizing con-

texts related with apnea and sleeping monitor. This re-

search also inspected the use of several methods to com-

bine data from the sensors and their contribution in im-

proving the detection accuracy.

3. Proposed Method

This research constructed and evaluated a wearable de-

vice to detect human contexts related with apnea detec-

tion and sleep monitoring using multiple audio sensors.

This research compared several parameters to build the

most suitable design of the device and models for the sys-

tem. And lastly, this study also adopted and compared

several fusion methods to combine data from the sensors

and evaluates the effect towards the accuracy of the sys-

tem.

3.1 Preliminary Experiment and Prototype Con-

struction

In the initial stage of the research, this study carried out

a preliminary experiment to examine the most suitable

positions to attach the device in terms of wear-ability and

the quality of acquired data. Three positions were com-

pared: a) position A=neck under the jaw area (around the

carotid artery), b) position B= at the lower part of neck,

between the clavicular bone (suprasternal notch area), and

c) position C = the left chest area.

Audio data from the mentioned positions were collected

using two different types of microphones: an open-air mi-

crophone and a contact microphone. Both of the micro-

phones used in experiment were commercial KY-038 mi-

crophones, however one of the microphone is modified and

connected to a chest piece of stethoscope to be functioning

as the contact microphone.

A five minutes’ length recording data were obtained

from one subject. The data was separated into 4:1 train-

ing and testing data. Then the data was preprocessed

using 3s segmenting with 0.25 step length with the sam-

pling frequency of 44.1 kHz. Features extracted in this



図 1: Proposed Device

preliminary experiment was 10 FFT peaks, mean, vari-

ance, range, and energy value. Then a simple evalua-

tion in Weka and MATLAB using SVM was conducted.

During the preliminary experiment, three initial contexts

were detected such as heart-beat, breathing, and swallow-

ing context. For the heart-beat detection, the positions

A, B, and C obtained the accuracy of 95.8%, 96.5%, and

95.9% respectively. While both breathing and swallowing

context accuracy detection were 65.4%, 75.9%, and 36.9%

respectively. Based on the mentioned result, Position B

(suprasternal notch) was chosen as the most suitable po-

sition to attach the device.

A wearable device design was constructed as shown in

Figure 1 following result of the preliminary experiment.

3D printed case was designed to maintain both of the mi-

crophones compact. The case was printed using acryloni-

trile butadiene styrene (ABS) material and the printed

case was then polished and smoothed so that it will be

more comfortable for the user to wear. The device is con-

nected to PC through two different audio channels for each

microphone.

3.2 Experiment

Following the construction of the wearable device, ex-

periments were conducted using the device. Data from

seven healthy people in their 20s and 30s were collected

during the experiment. The purpose of this experiment

was to collect audio data for the construction of the pre-

diction/classification model for the system to predict bio-

contexts related to sleep sensing and apnea.

A 10 minutes’experiment was conducted for each sub-

ject. The participants were asked to lay down in order to

mimic a sleeping position while the device was attached

as shown in Figure 2 and recording their data. Supple-

図 2: Device Attachment 図 3: Experiment Setting

mentary audio and video data recorded using professional

microphone and video camera also collected to construct

ground-truth label.

The experiment for each subject with the environment

as shown in Figure 3 was divided into three parts which

were: a) Minutes 0-8: participants were asked to perform

natural breathing and periodic swallowing, b) Minutes 8-

9: participants were asked to perform body movements

such as rolling to the left and right, c) Minutes 9-10: par-

ticipants were asked to perform oral sounds to mimic snor-

ing and sleeping sound.

3.3 Data Analysis

Data acquired from the experiment was then processed

and several aspects were compared to obtain the most

suitable parameters for the system such as window sizes,

feature values, and machine learning algorithms.

Initially, three window sizes were examined. The 10

minutes’ data with frequency sampling of 44.1 kHz were

segmented using three different length of window sizes of

1-,2-,3-s lengths with a step size of 0.25. Then, two differ-

ent feature values were compared which were statistical-

frequency domain features and MFCC features. The first

type of feature consisted of 10 FFT peak values, 1 maxi-

mum amplitude, 1 range, 1 variance, and 1 energy value of

each segment. While the MFCC features were 13 MFCC

features and 1 log energy value. Both of types of the

features were extracted in MATLAB programming envi-

ronment.

The dataset was then separated into 4:1 training data

and testing data to detect contexts labelled as breathing,

others, swallowing, movement, and oral sound. In order

to detect mentioned contexts, the prepared training data

and testing data were evaluated in the WEKA program to

compare two different machine learning algorithms which

are the Support Vector Machine (SVM) and Random For-

est algorithm. While the raw heartbeat signal was pro-

cessed using peak detection to determine the number of

heartbeat per minute also the status of heartbeat such as



図 4: Aggregate Method Structure

図 5: Stacking Method Structure

low, normal, or high.

3.4 Combination of Multiple Microphones Data

This study selected and modified two signal fusion

methods based on the references to construct prediction

based on the combination of data obtained from the two

microphones used in the device, contact microphone and

open air microphone. The methods evaluated in this

study was classified into Aggregation Method and Stack-

ing Methods. The second method is divided into Deci-

sion Tree-based Stacking Method and SVM-based Stack-

ing Method. This process will be limited on evaluating

the optimum parameters obtained in the previous data

analysis.

3.4.1 Aggregation Method

Aggregration Method combined feature values of both

Sensor A and Sensor B, open air microphone as Sensor

A and contact microphone as Sensor B. The flow of this

method can be seen in Figure 4. Following the combina-

tion of features from both sensors, the data is then pre-

processed. In the preprocessing stage, this research used

K-fold Cross Validation with k=2 followed by SMOTE

filtering to prevent bias during the classification process.

The preprocessed data was then classified using SVM-

polynomial kernel. The preprocessing and classification

processed were carried out in WEKA programming envi-

ronment.

3.4.2 Stacking Method

Stacking Method was done by evaluating the data using

two level classification process as seen in Figure 5. Data

from each sensor was processed separately to output the

first-level classification output. This classification result

of each microphone was then combined and used as the

input of the second-level classification. Before inputing

the data into the first-level classification, the data was

preprocessed using the same approach as the aggregation

method which are K-fold Cross Validation with k=2 and

SMOTE filtering.

This data was then inputted into the first-level of clas-

sification. The first-level classification algorithm was se-

lected based on the optimum classifier obtained from the

previous uncombined data analysis. The result of the first-

level classification or Output A and Output B was then in-

putted into the second-level classification as Input A’ and

Input B’. Both preprocessing and classification method

were performed in WEKA programming environment.

The proposed stacking method was then comparing

models and results obtained from two the types of algo-

rithm as the second-level classifier. Firstly, decision tree or

rule based classification was selected as classification algo-

rithm. J48 Decision Tree was used in WEKA to classify

each training data. The second type selected algorithm

was SVM-polynomial kernel.

Accuracy of the resulting data from both classifiers were

then compared along with the comparison of all proposed

combination methods to the non-combined results.

4. Results and Discussion

4.1 Optimum Parameters

Different parameters were compared and combined to

obtain the optimum characteristics to be applied in the

future system. Data from seven subjects which were ac-



表 1: Context Detection Accuracy

Index Context
Open-air

Mic [%]

Contact

Mic [%]

1 Breath 71.9 59.2

2 Others 21.1 59.5

3 Swallowing 39.7 71.5

4 Movement 92.1 95.9

5 Oral Sound 92.3 86.9

quired in the experiment were analyzed. This analysis

compared window sizes, feature values, classification al-

gorithms, and also the performance of each type of mi-

crophones to detect the desired contexts. Processes held

in MATLAB and WEKA programming environment re-

sulted in the higher overall performance of contact mi-

crophone to detect the contexts when compared with the

open-air microphone with the highest accuracy of 76.9%

for the contact microphone while the open-air microphone

resulted best accuracy of 65.4%.

The combination of data obtained with contact micro-

phone, 1s window segmenting, extracted MFCC features,

and SVM Polynomial Kernel resulted in better classifica-

tion of overall data from all the seven subjects. While the

combination of 3s window segmenting, extracted MFCC

features, and SVM Polynomial Kernel performed better

result to classify the open-air microphone data. Thus,

based on the mentioned result it was assumed that men-

tioned combinations performed better to classify data

from each microphone.

Each context accuracy evaluation were performed as

shown in Table 1. Table 1 shows that despite the higher

overall detection accuracy of the contact microphone data,

the open-air microphone obtained better performance to

detect breathing and oral sound contexts with both 71.9%

and 92.3% accuracy. This result indicating that the per-

formance and accuracy of the system might be improved

by combining both microphones. Another phenomenon

is that body movement sound noises affect the input of

the open-air microphone, however it does not affect the

contact microphone so much. Since some types of noises

affect one of the microphones, combining the microphones

can be be an effective alternative. Thus, in the next stage

of the study this research evaluated different combination

methods for the data from two microphones with aim to

improve the context detection accuracy. The result of this

optimum parameters analysis was used as the basis for the

combination methods.

4.2 Combination Methods Result

This research evaluated two methods to combine audio

data from two microphones with objective to improve the

accuracy of the system. Methods used in this evaluation

was based on the existing sensor combination approaches

as mentioned in the previous related research explana-

tions[24]. Data and parameter combinations used in this

evaluation was based on the previous optimum parame-

ters analysis. The previous evaluation confirmed following

best parameters for open-air microphone data (Sensor A):

3s windowing size, 28 MFCC Features, and SVM Polyno-

mial Kernel. While for contact microphone data (Sensor

B): 3s windowing size, 28 MFCC Features, and SVM Poly-

nomial Kernel.

4.2.1 Aggregation Method

In the evaluation using aggregation method, features

from both sensors were combined resulting in the total of

56 features from both of the sensors data. In the dataset

preparation, even though 1s windowing performed better

for Sensor B data, the MFCC features extracted from the

3s segmented Sensor B data was still combined with the

features obtained from the 3s segmented Sensor A data

and vice versa.

The 2 fold cross validation process resulted in two dif-

ferent sets of training and test set. The training set of

each data then processed with SMOTE filtering resulting

in the same number of data for each classes. Training and

testing data then classified using SVM Polynomial Kernel

classifier due to the better performance of this classifier in

the previous evaluation. Average of result obtained two

different sets of training and test set for each trial were

calculated.

Table 2 presented the result of the aggregation method.

Model A and Model B were obtained from the 2-fold cross

validation process and the average of these two models

was calculated. This average score was then compared to

the previous accuracy (Prev. Acc. in Table 2) which was

obtained in the previous evaluation of uncombined data

using the related parameters. The difference between the

average accuracy using aggregation method with the pre-

vious accuracy was formulated in the delta score.

From the Table 2, it is shown that the method improved

10 out of the 14 trials performed in this evaluation with

the average delta of 11.4%. Using the proposed method,

4 out of 14 accuracy of the data was decreased by the

average of 15.3%. Average accuracy for each window size

of 1s and 3s also experiencing improvement of 59.4% and

58.8% respectively, compared to the previous accuracy of



表 2: Aggregation Method Accuracy

Sub.
Win.

Size

Model

A

Model

B

Avg.

Models

Prev.

Acc.
Delta

A
1 63.5 74.4 69.0 22.9 46.1

3 58.8 60.6 59.7 26.7 33.0

B
1 61.9 75.0 68.5 66.2 2.3

3 58.4 71.4 64.9 59.3 5.6

C
1 68.6 70.8 69.7 62.7 7.0

3 61.4 73.0 67.2 60.9 6.3

D
1 22.8 20.3 21.6 52.2 -30.7

3 32.8 63.5 48.2 58.2 -10.1

E
1 63.3 63.2 63.3 72.0 -8.8

3 44.7 55.7 50.2 61.9 -11.7

F
1 66.5 71.9 69.2 67.9 1.3

3 62.7 63.6 63.2 59.5 3.7

G
1 52.6 57.1 54.9 52.2 2.7

3 57.1 59.5 58.3 52.7 5.6

表 3: Staking Method: Rule-based Classifier Accuracy

Sub.
Win.

Size

Model

A

Model

B

Avg.

Models

Prev

Acc.
Delta

A
1 83.8 83.3 83.6 22.9 60.7

3 75.1 74.7 74.9 26.7 48.2

B
1 70.2 60.8 65.5 66.2 -0.7

3 79.1 73.8 76.5 59.3 17.2

C
1 71.1 79.1 75.1 62.7 12.4

3 66.9 78.5 72.7 60.9 11.8

D
1 66.1 46.6 56.4 52.2 4.1

3 66.1 69.9 68.0 58.2 9.8

E
1 54.2 72.1 63.2 72.0 -8.9

3 74.7 66.2 70.5 61.9 8.6

F
1 73.1 68.8 71.0 67.9 3.0

3 56.3 72.1 64.2 59.5 4.7

G
1 70.6 75.5 73.1 52.2 20.9

3 70.7 70.1 70.4 52.7 17.7

56.5% and 54.2%.

4.2.2 Stacking Method: Rule-based Classifica-

tion

Stacking method with rule-based classifier of J48 Deci-

sion Tree was performed as the second level classification

process. Each sensor datasets with MFCC features were

preprocressed with k-fold cross validation and SMOTE fil-

tering and then inputted into the SVM algorithm as the

first level classification. This process resulted in output in

the format of predictions (1: breathing, 2: others, 3: swal-

lowing, 4: movement, 5: oral sound) and the new dataset

was prepared using five previous predictions from each

sensors as features. Thus, the new dataset consisted of 10

features values: 5 features from Sensor A and 5 features

from Sensor B. The data then inputted into the second

表 4: Staking Method: SVM-based Classifier Accuracy

Sub.
Win.

Size

Model

A

Model

B

Avg.

Models

Prev.

Acc.
Delta

A
1 83.7 85.1 84.4 22.3 62.1

3 73.5 77.2 75.4 26.7 48.7

B
1 71.7 75.0 73.4 66.2 7.15

3 76.5 77.7 77.1 59.3 17.8

C
1 70.0 77.9 74.0 62.7 11.3

3 66.7 76.9 71.8 60.9 10.9

D
1 65.6 59.6 62.6 52.2 10.4

3 66.7 69.5 68.1 58.2 9.9

E
1 74.3 68.6 71.5 72.0 -0.6

3 54.8 66.7 60.8 61.9 -1.2

F
1 72.7 74.9 73.8 67.9 5.9

3 69.5 71.8 70.7 59.5 11.2

G
1 69.5 74.4 72.0 52.2 19.8

3 70.7 37.5 54.1 52.7 1.4

level classifier resulting in two models for each trials. The

same data analysis process as the previous aggregation

method was performed for the result of this method.

Rule-based Classifier of J48 Decision Tree was used as

the second classifier and result as presented in Table 3 was

obtained. The proposed rule-based stacking method im-

proved 12 out of 14 trials with the average improvement

of 18.3% while the rest of the data experienced average of

4.8% loss. Both improvement and loss of this method were

superior compared with the previous aggregation method.

Average accuracy for each window size of 1s and 3s also

experiencing improvement of 69.7% and 71% respectively

which were better when compared with previous proposed

method and the uncombined result.

4.2.3 Stacking Method: SVM-based Classifica-

tion

The same process as the previous rule-based stacking

method were performed while in this proposed method,

SVM polynomial kernel was used as the second-level clas-

sifier. This proposed method resulted the best accuracy

compared with the previous evaluated methods. The

highest average accuracy of 84.4% as shown in Table 4

and the average improvement of 18% were obtained. Both

stacking methods have relatively similar average improve-

ment of accuracy while the third method result in mini-

mum loss of -0.85% which was the lowest out of all pro-

posed methods. Average accuracy for each window size

of 1s and 3s also experiencing improvement of 73.1% and

68.3% respectively. Table 2, Table 3, and Table 4 showed

that data obtained from Subject A achieved the best accu-

racy and highest improvement using the proposed meth-



図 6: Ground Truth and Aggregation Method Time Series

Result with 1:breathing, 2:others, 3:swallowing, 4:move-

ment, and 5:oral sound

図 7: Ground Truth and Rule-based Method Time Series

Result with 1:breathing, 2:others, 3:swallowing, 4:move-

ment, and 5:oral sound

ods. Data from Subject A resulted in 74.4%, 83.8%, and

85.1% accuracy for all methods respectively with 46.6%-

62.1% improvement while the previous accuracy show that

the specific data have the worst value. This result shows

that the proposed method can improve low accuracy data.

In the opposite, data from the Subject E marked the

best accuracy in the previous uncombined approach, how-

ever the specific data experienced loss using the proposed

methods. Thus, it can be concluded that the combination

approach does not support the detection improvement for

this specific data.

Figure 6, 7, and 8 compared the time series result of

each methods . From the figure, it can be seen that the

SVM-based stacking method resulted the best prediction

for most of the contexts.

5. Conclusion and Future Work

This research constructed a wearable device and evalu-

ated methods to detect contexts for sleeping-state sensing

and apnea detection. Breathing, others (non-breathing

state), heartbeat, swallowing, movement, and oral sound

図 8: Ground Truth and SVM-based Method Time Series

Result with 1:breathing, 2:others, 3:swallowing, 4:move-

ment, and 5:oral sound

contexts were detected. The initial data analysis resulted

in the optimum parameters of window sizes, feature val-

ues, and classification algorithms for each microphones.

The contact microphone data resulted in better classifica-

tion of 76.9% accuracy. However, there was a possibility

of improving the system accuracy by combining both mi-

crophones data. Thus, this research proposed combina-

tion methods of aggregation method and stacking meth-

ods. The stacking methods have two types of approach

which was rule-based classifier of J48 Decision Tree and

SVM-based classifier as the second-level classification al-

gorithm. The proposed methods resulted in the improve-

ment of the overall accuracy of 11.4-18.3% with the last

method of SVM-based stacking method marked the best

accuracy of 85.1% and 62.1% best improvement.

Comparing this research result to the previous stud-

ies, this research was able to detect more number of con-

texts (six contexts) compared to the mentioned studies in

both apnea and sleeping-state detection field [3], [8]. This

study evaluated several aspects such as windowing sizes,

feature values, and classification algorithms for this spe-

cific proposed system. Thus, even though previous related

studies have evaluated such parameters with accuracy as

mentioned in Section 2.3, it is hard to compare the re-

sult obtained in this study with previous research since

the evaluated parameters were specific to the system con-

structed in this study. Then, this study also evaluated

several combination methods of both microphone to in-

vestigate whether the mentioned methods can improve the

accuracy of the contexts detection. This combination use

of multiple audio sensors are novel [3], [8] with the result

that the approach obtained more contexts and improved

detection accuracy. A second prototype with a more com-

fortable and smaller design will be developed to improve



the wear-ability of the device. Sleeping environment ex-

periments will also be held to analyze the performance of

the system.
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thier, I. Fietze, and T. Penzel: Comparison of Apnea De-
tection Using Oronasal Thermal Airflow Sensor, Nasal
Pressure Transducer, Respiratory Inductance Plethys-
mography, and Tracheal Sound Sensor, Journal of Clin-
ical Sleep Medicine, Vol. 15, No. 2, pp. 285–292 (Feb.
2019).

[20] S. Li, B. Lin, C. Tsai, C. Yang, and B. Lin: Design of
Wearable Breathing Sound Monitoring System for Real-
time Wheeze Detection, Sensors, Vol. 17, No. 1, pp. 1–15
(Jan. 2017).
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